The roles of RGMa-neogenin signaling in inflammation and angiogenesis
نویسندگان
چکیده
Repulsive guidance molecule (RGM) is a glycosylphosphatidylinositol (GPI)-anchored glycoprotein that has diverse functions in the developing and pathological central nervous system (CNS). The binding of RGM to its receptor neogenin regulates axon guidance, neuronal differentiation, and survival during the development of the CNS. In the pathological state, RGM expression is induced after spinal cord injury, and the inhibition of RGM promotes axon growth and functional recovery. Furthermore, RGM expression is also observed in immune cells, and RGM regulates inflammation and neurodegeneration in autoimmune encephalomyelitis. RGMa induces T cell activation in experimental autoimmune encephalomyelitis (EAE), which is the animal model of multiple sclerosis (MS). RGM is expressed in pathogenic Th17 cells and induces neurodegeneration by binding to neogenin. Angiogenesis is an additional key factor involved in the pathophysiology of EAE. Via neogenin, treatment with RGMa can suppress endothelial tube formation; this finding indicates that RGMa inhibits neovascularization. These observations suggest the feasibility of utilizing the RGMa-neogenin signaling pathway as a therapeutic target to overcome inflammation and neurodegeneration. This review focuses on the molecular mechanisms of inflammation and angiogenesis via RGM-neogenin signaling.
منابع مشابه
Repulsive Guidance Molecule a Inhibits Angiogenesis by Downregulating VEGF and Phosphorylated Focal Adhesion Kinase In Vitro
Repulsive guidance molecule a (RGMa) is a major neuron guidance factor in central nervous systems. We previously found that inhibition of RGMa could greatly enhance neural function rehabilitation in rats after MCAO/reperfusion. Neuron guidance factors are often regulators of angiogenesis. However, the effect of RGMa on angiogenesis and its mechanisms remain to be determined. Here, we investigat...
متن کاملIdentification of the Neogenin-Binding Site on the Repulsive Guidance Molecule A
Repulsive guidance molecule (RGM) is a membrane-bound protein that was originally identified as an axon guidance molecule in the chick retinotectal system. RGMa, one of the 3 isoforms found in mammals, is involved in laminar patterning, cephalic neural tube closure, axon guidance, and inhibition of axonal regeneration. In addition to its roles in the nervous system, RGMa plays a role in enhanci...
متن کاملNovel roles of the chemorepellent axon guidance molecule RGMa in cell migration and adhesion.
The repulsive guidance molecule A (RGMa) is a contact-mediated axon guidance molecule that has significant roles in central nervous system (CNS) development. Here we have examined whether RGMa has novel roles in cell migration and cell adhesion outside the nervous system. RGMa was found to stimulate cell migration from Xenopus animal cap explants in a neogenin-dependent and BMP-independent mann...
متن کاملSpatiotemporal Expression of Repulsive Guidance Molecules (RGMs) and Their Receptor Neogenin in the Mouse Brain
Neogenin has been implicated in a variety of developmental processes such as neurogenesis, neuronal differentiation, apoptosis, migration and axon guidance. Binding of repulsive guidance molecules (RGMs) to Neogenin inhibits axon outgrowth of different neuronal populations. This effect requires Neogenin to interact with co-receptors of the uncoordinated locomotion-5 (Unc5) family to activate do...
متن کاملRGMa and RGMb expression pattern during chicken development suggest unexpected roles for these repulsive guidance molecules in notochord formation, somitogenesis, and myogenesis.
BACKGROUND Repulsive guidance molecules (RGM) are high-affinity ligands for the Netrin receptor Neogenin, and they are crucial for nervous system development including neural tube closure; neuronal and neural crest cell differentiation and axon guidance. Recent studies implicated RGM molecules in bone morphogenetic protein signaling, which regulates a variety of developmental processes. Moreove...
متن کامل